
Generation of a Set of Simple, Interpretable ADMET Rules of Thumb

M. Paul Gleeson*

Computational and Structural Chemistry, GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road,
SteVenage, Hertfordshire, SG1 2NY, United Kingdom

ReceiVed September 10, 2007

A set of simple, consistent structure–property guides have been determined from an analysis of a number
of key ADMET assays run within GSK: solubility, permeability, bioavailability, volume of distribution,
plasma protein binding, CNS penetration, brain tissue binding, P-gp efflux, hERG inhibition, and cytochrome
P450 1A2/2C9/2C19/2D6/3A4 inhibition. The rules have been formulated using molecular properties that
chemists intuitively know how to alter in a molecule, namely, molecular weight, logP, and ionization state.
The rules supplement the more predictive black-box models available to us by clearly illustrating the key
underlying trends, which are in line with reports in the literature. It is clear from the analyses reported
herein that almost all ADMET parameters deteriorate with either increasing molecular weight, logP, or
both, with ionization state playing either a beneficial or detrimental affect depending on the parameter in
question. This study re-emphasizes the need to focus on a lower molecular weight and logP area of
physicochemical property space to obtain improved ADMET parameters.

1. Introduction

Drug discovery has become increasingly difficult in the last
few decades as a result of the extra development hurdles placed
in the path of pharmaceutical research programs, and the
perceived reduction in the number of tractable targets. ADMETa

considerations are a particular concern with issues such as high
plasma protein binding requiring extra studies for FDA approval.
This is because the free fraction and, hence, the safety margin
can change significantly as a result of age or certain disease
states1,2 so must be investigated further. Similarly, further
development work is needed should a molecule be shown to
be either a hERG3 or P450 inhibitor4 due to the possibility of
cardiac arrhythmia or drug-drug interactions, respectively.

The pharmaceutical industry has reacted to the changes in
the development process by profiling the molecules of interest
earlier and more extensively using in vivo and in vitro methods.
However, these methods still require a molecule to be synthe-
sized and screened, which has prompted extensive research into
in-silico methods that can be used to virtually assess molecules
from their molecular structure alone. In-silico models have been
developed on almost all the key ADMET assays employed
within the pharmaceuticals industry and are reviewed in detail
elsewhere.5–10

Many of the in-silico ADMET quantitative structure–property
relationship (QSPR) models reported in the literature rely on
more advanced statistical methodologies such as neural net-

works, genetic algorithms, decision trees, and support vector
machines or complex descriptors such as e-state,11 BCUT,12,13

or custom pharmacophoric14,15 descriptors. While leading to
more predictive algorithms in general, mechanistic understand-
ing is limited due to the complicated nature of the models.

To counter the general reduction in interpretability of QSPR
models, an attempt was made to demonstrate a set of simple
rules of thumb based on large data sets a range of ADMET
assays run within GSK (Table 1). To allow for greater
understanding, a simple statistical technique was used in
combination with three simple properties familiar to medicinal
chemists.

Simple rules can often have a greater impact than more
complex, more predictive in-silico models due to their greater
uptake among the medicinal chemistry community. Examples
of these include Lipinski’s rule of 516 for absorption or guides
by van de Waterbeemd et al.17 for CNS penetration. The former,
in particular, has proved immensely useful in lead generation
and optimization due to the uncomplicated message given and
ease with which a chemist can incorporate the required changes
into the next molecule in the series.

2. Results

A small number of information-rich, orthogonal molecular
descriptors were required to generate structure–activity relation-
ships (SAR) for the 15 different ADMET assays studied here
(Table 1). This subset was obtained by building a principal
components analysis18–22 (PCA) model on ∼30000 diverse GSK
molecules for which 12 commonly used descriptors had been
computed (Figure 1 and Table 2).

Analysis of the PCA model results shows that we can describe
81% of the variation in the 12 descriptors using just four
orthogonal components. Components one and two cumulatively
describe ∼60% of the total variation in the data set, with
components three and four describing an additional 21%. Rather
than using the four uninterpretable pseudodescriptors, we can
alternatively use the descriptor with the largest absolute
contribution to that particular component as being representative
of the variance explained. Thus, the plot of molecular weight
(MWT), the descriptor with the largest weight on component
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one, against the component in itself, reveals an r2 of 0.92. This
means MWT explains 92% of the total information within
component one. For component two, either clogP or the
oppositely correlated polar surface area (PSA) could be used.
The former was chosen in preference to the latter as it is a more
widely used parameter in drug discovery. Note that the
correlation between clogP and MWT is just 0.14 for the ∼30000
diverse data set, confirming that the parameters are weakly
correlated and, thus, essentially orthogonal. Finally, acidic and
basic functional group indicator variables are representative of
components three and four, respectively, and these can be
collectively used to describe the overall ionization state of a
molecule (i.e neutral, acidic, basic or zwitterionic23). See Figure

S1 in the Supporting Information for further details on the
relationship between pKa and the ionization state definition.

The three essentially orthogonal molecular descriptors chosen
for this study (size, lipophicity, and ionization state) describe
the key bulk property characteristics of molecules and provide
us with a means to derive relatively simple rules across a number
of ADMET assays. This we discuss in the following section.

2.1. Relationship between Structure and ADMET Lia-
bilities. Analysis of variance (ANOVA) is the statistical method
used to assess the size and significance of the differences in
the means of the different property groups. The ANOVA results
for the 15 different assays are presented graphically in terms of
(a) MWT, (b) ionization state, and (c) clogP and ionization state
combined. In each ANOVA graph, the mean along with the
95% confidence in the mean for each of the variable categories
are illustrated. The effect of a variable on a given ADMET
parameter can be considered statistically significant at the 99.9%
confidence level unless otherwise stated. Furthermore, the effect
of clogP and MWT on the ADMET parameter can be considered
independent at the 99.9% confidence level unless otherwise
stated.24

In each plot provided, the width of the errors bars and the
difference in the mean values of the different categories are
indicative of the strength of the relationship between the
parameters. In the few cases a variable has no effect on a
particular ADMET parameter, a graph is still reported, as the
lack of a relationship can be as important as the presence of
one. Care must be taken to avoid overinterpreting the differences
in the means found in these uni and bivariate analyses. For
example, we may see a statistically significant difference
between the mean ADMET parameters of two different ioniza-
tion states, but this could in principle be due to, or accentuated

Table 1. List of the ADMET Assays Studied Hereina

category ADMET assay type comments unit

absorption solubility phosphate buffer pH 7.4 log(Sol) (mM/L)
permeability permeability assay pH 7.4 logPapp (nm/s)
oral bioavailability rat - in vivo PK studies log(F)

distribution volume of distribution rat - in vivo PK studies log(VDss) (L/kg)
plasma protein binding rat plasma - equilibrium dialysis logK (%bound/%free)
CNS penetration rat - in vivo PK studies log([brain]/[blood])
P-gp efflux MDCK assay with and without a P-gp inhibitor logPapp (B–A/A–B)
brain tissue binding rat brain homogenate - equilibrium dialysis logK (%bound/%free)

metabolism in vivo clearance rat - in vivo PK studies log(CL) (ml/min/kg)
excretion - - -
toxicity hERG inhibition [3H] dofetilide assay pIC50

1A2 inhibition fluorescence based assay pIC50

2C9 inhibition fluorescence based assay pIC50

2C19 inhibition fluorescence based assay pIC50

2D6 inhibition fluorescence based assay pIC50

3A4 inhibition fluorescence based assay pIC50

a For further details on the GSK assays employed, see the Experimental Section.

Figure 1. (a,b) PCA loadings plots showing component 1 vs
component 2 (top) and component 3 vs component 4. Descriptors at
the extreme end of the axes of the loading plots have the greatest impact
on the corresponding component. The scores plot can be found in the
Supporting Information, Figure S2.

Table 2. Selection of In-Silico Descriptors Often Used in Profiling
Molecules23

No. descriptors

1 calcd ACD logD pH 7.4 (logD)
2 calcd ACD logP (logP)
3 hydrogen bond acceptors (HBA)
4 hydrogen bond donors (HBD)
5 negatively ionizable group (NEG)
6 positively ionizable group (POS)
7 molecular flexibility (FLEX)
8 calcd molar refractivity (CMR)
9 molecular weight (MWT)

10 polar surface area (PSA)
11 rotatable bonds (bonds)
12 heavy atom count (heavy)
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by, differences in another property, such as logP. With this in
mind, a conservative interpretation of the data is reported,
relying on (1) results that pass statistical tests at the 99.9%
confidence level, (2) validation of results based on reports in
the literature, (3) comparison of the results to those from
multivariate in-house analyses,23 (4) relying on in-house knowl-
edge of the ADMET assays in question, and (5) analysis of the
chemotypes found in bins containing few observations or those
that appear to be outliers.

2.2. Absorption. 2.2.1. Solubility. Good solubility is an
important component of an orally administered drug, determin-
ing the amount freely available to permeate through the gastro-
intestinal membranes into systemic circulation.25 Considerable
emphasis is placed on maximizing this property in lead
generation (LG) and lead optimization (LO), relying on both
physicochemical assays and in-silico models. To supplement

these methods, a set of simple rules of thumb for solubility were
determined using phosphate buffer measurements on 44584
diverse molecules (Figure 2).

As the size of a molecule increases, represented here by the
MWT, solubility on average decreases in line with reports from
the literature16,26,28,29 (Figure 2a). On average, molecules with
MWTs < 300 have solubilities of ∼250 µM (µmol/L), but
molecules at the other extreme, with MWTs > 700, have
solubilities of just 11 µmol/L. The width of the errors bars,
which are dependent on the number of observations in a bin
and their standard deviation (σ), indicate that MWT has a large
effect on solubility. It should be noted that these results are
average effects only and they do not imply that one cannot
obtain soluble molecules with high MWTs. The results should
be interpreted as being indicative of the likelihood that an
optimal value will be obtained given a set of property values.

Figure 2. (a-f) Relationship between solubility (a-c) and AM permeability (a-d) with respect to MWT (top), ionization state (middle), and a
combination of clogP and ionization state (bottom) for 44584 and 50641 molecules measured in the respective assays. In c and f, green solid line
denotes clogPs < 3, orange dashed line denotes clogPs ) 3-5, and red dotted line denotes clogPs > 5. The error bars denote the 95% confidence
limits of the mean.
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Ionization state plays a key role in defining the solubility of
molecules 28,27 (Figure 2b). The width of the error bars and the
range in the solubility averages for the different ionization
categories also indicate that ionization has a strong effect.
Ionization state would be expected to play an important role
on the solubility because the presence of ionizable groups will
generally lead to a greater solvation energy increase going from
the crystal form to aqueous solution. Zwitterionic molecules
contain both an acidic and basic functional group and so are
the most highly soluble on average, while neutral molecules
are the least soluble on average. Acidic molecules are more
soluble on average than basic molecules, as defined here.
However, this is more a reflection of the ionization state
definition.23 Molecules defined as acidic are almost exclusively
strong acids that are almost fully ionized at pH 7.4. Bases are
much more common but show greater variation in their pKas,
even though they are predominantly ionized (>50%) at pH 7.4.

The strong relationship between solubility and lipophilicity
is often discussed in the literature, and unsurprisingly, on this
large, diverse data set, we find that as clogP increases, solubility
on average decreases16,28–30 (Figure 2c). It is also clear that while
neutral molecules are on average more poorly soluble than any
other ionization state, lowering the clogP to <3 sees their
solubility approach the mean solubility of the ionizable species
(Figure 2c). The effect of increasing lipophilicity does not appear
to have the same impact on the different ionization states, with
the solubility increasing more for neutral and basic molecules
compared to acids and zwitterions.

Given that there is often a degree of correlation between
lipophilicity and MWT within congeneric series in particular,
it is important to demonstrate that the effect they have on
solubility is essentially independent. For this data set, the
correlation between the two parameters is minimal (r2 ) 0.096,
N ) 44584, P < 0.00001). Furthermore, an analysis of the effect
of clogP on the mean log(Sol) values, for a given MWT bin,
indicate that one can be more than 99.9% confident that MWT
and clogP have an independent effect on solubility.24

2.2.2. Permeability. When an orally administered drug
dissolves in the gastro-intestinal tract, it must then be sufficiently
permeable through the biological membranes present to enter
the systemic circulation. Permeation can occur via transcellular
diffusion, paracellular diffusion, and transporter-mediated mech-
anisms, with the former often being mimicked in the laboratory
using artificial membrane assays, such as PAMPA variant,31

and the latter using MDCK32 or CACO233 cell lines. The
principal advantage of the former methodology is that it is less
expensive to run, allows greater numbers of molecules to be
characterized, and describes the predominant mechanism of
permeation.25 A data set of 50641 unique measurements from
an artificial membrane permeability assay (AM) run within GSK
were available for analysis.

As the MWT of a particular chemotype increases, membrane
permeability on average decreases (Figure 2d). In line with
literature reports, it is clear that as a molecule increases in size,
its ability to permeate through the artificial mimic of a biological
membrane on average decreases.16,34–36

Acidic molecules are generally found to be the least perme-
able through the negatively-charged lipid membranes, and this
can be rationalized on electrostatic grounds9,34 (Figure 2e).
Zwitterionic molecules are marginally more permeable than
acids on average, essentially a result of the negative charge
neutralization that occurs due to the addition of a basic group.
Bases are the second most permeable group on average but less
than neutral molecules, presumably as a result of the stronger

interaction they can form with the anionic membrane itself, thus
limiting the rate of diffusion.

Only neutral molecules show the traditional nonlinear de-
pendence between the logPapp and clogP.36,37 For basic, acidic,
and zwitterionic molecules, increasing the clogP appears to lead
to an increasing permeability on average (Figure 2f).

2.2.3. Bioavailability. The oral bioavailability of a molecule
is a complex pharmaco-kinetic (PK) parameter that comprises
absorption (solubility, permeability) and clearance components.38,39

It is a widely used parameter in drug discovery as it is relatively
easy to obtain in vivo as compared to the direct measurement
of the fraction absorbed.

In line with reports from others,16,40 it is found that MWT
plays an important role in defining the extent of bioavailability
in rat for the N ) 4431 diverse set of molecules under
investigation here (Figure 3a). Molecules with MWTs < 300
have average bioavailabilities of ∼18% compared to ∼10% for
those with MWTs > 700. The impact of MWT on bioavail-
ability is understandable given that both permeability and
solubility are strongly dependent on this parameter. However,
while statistically significant, the error bars associated with the
bioavailability-MWT relationship are larger than those found
for solubility or permeability, indicating it has a weaker effect
on this parameter.

Ionization state has only a minor impact on the overall
bioavailability of molecules (Figure 3b). The average bioavail-
abilities for neutral, basic and zwitterionic molecules are quite
similar, having values of 15, 13, and 10% on average,
respectively. The presence of an acidic group on bioavailability
is the most surprising, with these molecules being more
bioavailable on average (∼18%) than any of the other ionization
states.41 This difference could be considered surprising when
one recalls that acids are the least permeable of all the ionization
states, although this is balanced somewhat by solubility
considerations. Additionally, the clearance term, a key constitu-
ent of the bioavailability has not been factored in, and it will
be shown in section 2.4.1 that the increased bioavailability of
acids can in part be attributed to their relatively low clearance
in conjunction with good solubility.

The relationship between bioavailability and clogP is not
statistically significant at the 99.9% confidence level. This is
also the case when broken down by individual ionization state.
However, this could be a result of the relatively simplistic
modeling performed here24 (Figure 3c). Alternatively, the lack
of a relationship with lipophilicity may not necessarily be
surprising given similar reports in the literature42 and because
bioavailability is dependent on a number of different ADMET
processes (solubility, permeability, and clearance), each with a
subtly different dependence on lipophilicity. It might be expected
that reasonable correlations between logP and bioavailability
will be observed for particular chemotypes, where the differ-
ences in bioavailability are restricted to differences in solubility
for example.

It should be noted that PSA has been shown to be important
in describing bioavailability elsewhere.42,43 This is somewhat
understandable given that we can see that this parameter is
essentially a hybrid of MWT and clogP based on the principal
component plot discussed earlier (Figure 1).

2.3. Distribution. 2.3.1. Volume of Distribution. How
widely a drug molecule is distributed throughout the body once
it is absorbed must be considered, as this can determine whether
it will elicit a pharmacological response or not. The volume of
distribution is a nonphysiological term that is a measure of drug
distribution, which together with clearance determines the half-
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life and, thus, affects the dosing regimen. Potent, bioavailable
compounds may not be effective if they are insufficiently
distributed or have too short a half-life, because the concentra-
tion of drug maintained at the target might be insufficient to
sustain the pharmacological response between doses.

Analysis of the relationship between logVDss and MWT for
the 9375 observations available shows that increasing the latter
will lead to an on average increase in the former (Figure 4a).
However, it appears to be a very weak effect based on the small
range in the mean values for the different MWT categories and
the fact that the effect is limited to the relatively small number
of observations in the two extreme MWT bins (MWT > 700
and < 300).

Ionization state has the most dramatic effect on the volume
of distribution of molecules, and the trends found are in line
with reports in the literature by others44–46 (Figure 4b). Basic
molecules are more widely distributed throughout the body
compared to the other ionization states. Neutral and zwitterionic
molecules have similar mean logVDss values, which are in turn
higher than acids. These results can be rationalized on the
grounds that acids are generally confined to plasma due to strong
human serum albumin (HSA) binding (see Plasma Protein
Binding section). Bases do not bind as strongly to plasma
proteins and will distribute more widely into other compartments
in the body due to their affinity for negatively charged
membranes/tissues.

Figure 3. (a-c) Relationship between rat bioavailability and MWT
(top), ionization state (middle), and a combination of clogP and
ionization state (bottom), for 4431 molecules with measured values.
The coloring system is the same as that in Figure 2.

Figure 4. (a-c) Relationship between rat volume of distribution and
MWT (top), ionization state (middle), and a combination of clogP and
ionization state (bottom) for 9375 molecules with measured values.
The coloring system is the same as that in Figure 2.
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It appears that increasing clogP will generally lead to an
increase in the volume of distribution of neutral and basic
compounds in the body that is in general agreement with reports
elsewhere44,46 (Figure 4c). The effect is not seen for acids and
zwitterions, however.

2.3.2. CNS Penetration. For orally administered central
nervous system (CNS) drugs to be effective, both oral and brain
exposure are required to obtain a pharmacological response. For
non-CNS drugs, in contrast, it is generally a requirement that
brain exposure is minimized due to the possibility of undesired
pharmacological events. To enter the CNS, a molecule must
first traverse the blood-brain barrier, with transcellular and
active transport mechanisms, such as P-glycoprotein (P-gp)
efflux, being more important as a result of the tight junctions
between cells.47

From an analysis of 3059 diverse molecules with CNS
penetration data, we find that as MWT increases CNS penetra-
tion on average decreases (Figure 5a). The effect is both large
and statistically significant, even taking into account the MWT
> 700 bin, which has only 11 observations. Molecules with
MWTs < 300 have brain/blood ratios of 2.2 compared to 0.1
for molecules with MWTs > 700. Thus, as a molecule gets
bigger, its ability to permeate into the central nervous system
decreases, which is in line with reports by Gerebtzoff et al.,48

who showed similar relationships with molecular cross-sectional
area using a much smaller data set. The results are also in line
with the findings from the artificial permeability assay analyses
reported herein, as would be expected (Figure 2d).

Ionization state plays a key role in defining the extent of CNS
penetration of molecules (Figure 5b). Basic molecules are on

Figure 5. (a-f) Relationship between CNS penetration (a-c) and P-gp efflux ratio (d-f) with respect to MWT (top), ionization state (middle),
and the combination of clogP and ionization state (bottom) for 3059 and 1975 molecules measured in the respective assays. The coloring system
is the same as that in Figure 2.
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average more CNS penetrant than neutral molecules, followed
by zwitterions. Acidic molecules are the least CNS penetrant
of the four ionization states, in line with the permeability
measures described herein and a CNS QSPR study by Platts et
al.49

The key difference observed between CNS penetration and
permeability is that bases are found to be more CNS penetrant
than neutral molecules, in contrast to AM permeability. How-
ever, this does not take into account differences in other key
properties that might cloud the picture, including the pH gradient
the AM assay is run at. By taking into account lipophilicity, it
is apparent that the difference in penetration between neutral
and basic molecules identified in Figure 5b is minimal (Figure
5c). Furthermore, Platt et al. showed that an acidic indicator
variable added extra value in predictive equations but a basic
term did not,49 suggesting neutral and basic molecules behave
the same with respect to CNS penetration. The result for CNS
penetration is still subtly different compared to that for the AM
assay, where the neutral and bases are concerned, the former
molecules being more permeable on average than the latter for
a given clogP. It is difficult to say if this is a real difference or
a reflection of the AM assay.

In general, it is found that as the clogP of a molecule
increases, the CNS penetration on average increases, which is
understandable given that lower PSA values have been found
to increase CNS penetration based on other analyses.17,50

Nonetheless, the effect of MWT is stronger, as can be seen from
the range of the mean values for each MWT category when
compared to the former. This suggests lower MWT compounds
with a correspondingly lower PSA (or higher clogP) are desired
for improved CNS penetration. Breaking it down by ionization
state reveals a similar trend for neutral, basic, and zwitterionic
molecules but not zwitterions, which could be a result of the
small numbers of observations present.

Analysis of the effect of clogP on the mean logBB values,
beyond any MWT differences, show the two parameters have
a statistically significant independent effect on CNS penetration
at the 99.1% confidence level, below the threshold 99.9%
benchmark value used here. This result is above the more lax
but still commonly used 95% confidence level so one can still
say with a good degree of confidence that size and lipophilicity
have an independent effect on CNS penetration.24

2.3.3. P-gp Efflux. P-gp is an important transporter protein
found in cells throughout the body, such as those lining the
intestine and the blood-brain barrier.51 P-gp is believed to play
an important role in defining the extent of distribution of drug
molecules as a result of its ability to remove a structurally
diverse range of molecules from compartments in the body.52

P-gp efflux is believed to play a role in limiting oral exposure
and brain exposure of compounds, in particular, so is of
considerable importance to the pharmaceuticals industry.

Reports from the literature suggest that increasing molecular
bulk/weight/surface area is important in the defining the P-gp
efflux in various data sets,53–55 and the effect can also be seen
from 1975 diverse molecules with measured values in GSK
assays. As MWT increases, the P-gp efflux ratio (Papp B–A:
A–B) on average increases (Figure 5d). From the analyses of
permeability and CNS penetration data, we know that higher
MWT leads to lower permeability/penetration on average;
therefore, an added problem is that these molecules are more
likely to suffer from efflux by P-gp. Thus, as a molecule gets
bigger, the permeability on average decreases, limiting oral and/
or brain exposure, and P-gp efflux becomes an additional
complication reducing exposure.

Ionization state plays only a minor role in determining the
extent of efflux when compared to MWT. Neutral and basic
molecules have similar mean efflux ratios, with zwitterionic
molecules having noticeably higher and acidic molecules having
noticeably lower means (Figure 5e). This result is not surprising
given that the number of hydrogen bond donors51 is reported
as being important for substrate recognition rather than any
particular ionization state.

Lipophilicity has a weak nonlinear effect on the P-gp efflux
ratio. Molecules with clogPs between 3 and 5 have higher mean
efflux ratios than those with clogPs < 3 or > 5. Increasing
lipophilicity has been implicated in a number of studies relating
structure to P-gp efflux.54,51 Broken down by ionization state,
one finds that neutral molecules display a nonlinear relationship
with clogP, while the efflux ratio for basic molecules increase
only marginally, but linearly, with increasing clogP (Figure 5f).
The small number of acidic and zwitterionic molecules in the
data set make it difficult to obtain reliable trends for these
species. However, one can be confident (99.1% level) that MWT
and clogP have an independent effect on the P-gp efflux.

2.3.4. Plasma Protein Binding. The binding of drugs to
plasma proteins, and to human serum albumin (HSA), in
particular, has widespread ADMET implications. Plasma protein
binding affects the clearance according to the Well Stirred
Model,56 the volume of distribution according to the Gillette
equation,57 as well as efficacy, because it is the free fraction of
the drug that is required to elicit a pharmacological response.
As such, considerable effort is placed on the prediction of this
parameter in vitro and in-silico within the pharmaceutical
industry.

From an analysis of the 2939 diverse molecules with in vitro
plasma protein binding data, one can see that as MWT increases
plasma protein binding on average increases58 (Figure 6a). On
average, molecules with MWTs < 300 are 72% bound and
molecules with a MWT between 300 and 500 are 54% bound,
while molecules with MWTs between 500 and 700 are 98.2%
bound. Because only 13 observations are found in the “>700”
bin, it is not possible to say with any confidence whether there
is a drop in binding affinity as MWT increases above 700.

In terms of ionization state, binding to plasma proteins follows
the trend acids > neutrals > zwitterions > bases (Figure 6b),
which is in line with reports of Davis et al. based on a plasma-
derived data set59 and Valko et al.60 on HSA binding data set.

Lipophilicity is a key contributor to the extent of binding,
the process having a strong nonspecific component (Figure 6c).
Thus, as clogP increases, plasma protein binding on average
increases, in line with reports from others.23,60–65 It can also be
seen that, while bases and zwitterions are less protein bound
than acids, they can achieve equivalent levels of binding should
the clogP be sufficiently high.

The multivariate PLS model results reported by the author
on the same data set23 showed that MWT had a significant,
independent effect on protein binding above lipophilicity.
However, from these simplistic ANOVA models, the effect of
clogP is significant at the 96.2% confidence level. This result
also highlights that certain relationships might be missed as a
result of the simple, albeit interpretable modeling when allied
with quite rigorous statistical confidence limits.24 However,
given that this is above the commonly used 95% value and with
the knowledge of the multivariate results on the same data set,
we can be reasonably confident that the parameters have an
independent effect on binding.

2.3.5. Brain Tissue Binding. Brain tissue binding is a key
ADMET parameter that has implications for the efficacy of CNS
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drugs because, like plasma protein binding, it is the free fraction
in the brain that will elicit a pharmacological response.66 Thus,
it is important to consider the effect of molecular properties on
both the extent of CNS penetration and the extent of brain tissue
binding and whether they show different dependencies.

An analysis of 986 brain tissue binding measurements shows
that as MWT increases, brain tissue binding on average increases
(Figure 6d). Comparison of the results to those in plasma (Figure
6a) reveals distinct similarities, with larger molecules binding
more strongly to both types of tissue. Like the plasma protein
binding data set, no lessons can be learned from the MWT >
700 bin, in this case, because no observations are present.

Brain tissue binding does not seem to be dramatically affected
by ionization state, as compared to plasma protein binding.
Nevertheless, the small differences in the mean for the given

ionization states are still statistically significant, at the 99.7%
level (Figure 6e). The differences in logK (%bound/%free) for
neutral and basic molecules are small compared to that found
in plasma, while the small number of acids and zwitterions
makes it difficult to draw reliable conclusions. Austin et al.67

reported that the binding of bases was stronger to hepatocytes
compared to neutral or acidic molecules for a given logP, so
the differences observed here may simply be a reflection of the
tissue differences.

From Figure 6f, it is apparent that binding to brain tissue
has a similar dependence on lipophilicity as plasma protein
binding. Breaking the data down by ionization state reveals no
difference, suggesting brain tissue binding is driven primarily
by nonspecific effects. This is in line with brain tissue binding
studies reported on a set of basic molecules,68 as well as

Figure 6. (a-f) Relationship between plasma protein binding (a-c) and brain tissue binding (d-f) with respect to MWT (top), ionization state
(middle), and the combination of clogP and ionization state (bottom) for 2939 and 986 molecules measured in the respective assays. The coloring
system is the same as that in Figure 2. aAlthough the results reported in (e) and (f) are statistically significant, they are complicated by the small
number of observations in some categories. These issues are described in the text.
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conforming to our understanding of nonspecific binding to other
tissues such as plasma proteins and hepatocytes.67 Additionally,
one can be confident (96.1% level) that MWT and clogP have
a significant independent effect on brain tissue binding.

2.4. Metabolism. 2.4.1. In-vivo Clearance. Molecules that
possess good solubility and permeability may have low oral
bioavailability if the in vivo clearance (or plasma/blood clear-
ance) is too high. The in vivo clearance is also important as it
determines the half-life of a molecule in conjunction with the
volume of distribution, having implications for the dosing
interval. Clearance can occur via hepatic, renal, and bilary
processes and is considered to be the most difficult of the
ADMET process to predict due to the stronger dependence on
structural aspects than physicochemical properties.69

Analysis of the 11490 diverse molecules with clearance
measurements shows that there is no meaningful relationship
between MWT and the logCL (Figure 7a). Moving through the
MWT bins in increasing order, the mean clearances are 25.7,
25.1, 29.5, and 22.9 mL/min/kg, and while these differences
are technically statistically significant above the 99.9% confi-
dence level, they are of little importance from an SAR
viewpoint. This finding is understandable given the lack of even
simple QSPR models published in the literature, which might
be explained by the large number of different bioactivation
pathways associated with metabolism.70

Ionization state plays a more important role in defining the
extent of clearance in vivo. From Figure 7b, one can see that
the mean logCL of acidic molecules are considerably lower on
average than neutral and zwitterionic molecules, which in turn
are lower than bases. The range of the means and the width of
the errors bars indicate that this is a significant effect. These
differences in clearance can be rationalized based on protein
binding considerations, which are known to be an important
factor in determining the extent of clearance71,72 (i.e., the amount
of drug free in plasma will affect how highly cleared a molecule
is). Acidic molecules are the most highly bound on average
and, thus, least susceptible to clearance in the liver, while bases
are the least highly bound and are the most highly cleared.

A very weak nonlinear relationship appears to exist between
clogP and the in vivo clearance, which is statistically significant.
The strength of the relationship can be appreciated by consider-
ing the mean values associated with each clogP bin: 24.6 mL/
min/kg for clogP < 3, compared to 27.5 for clogP ) 3–5 and
26.9 for clogP > 5. The dependence on clogP differs subtly
when broken down by ionization state (Figure 7c). Increasing
the clogP has only a small but generally increasing effect on
the clearance of neutral and basic molecules. In contrast, the in
vivo clearance of acids and zwitterions decreases marginally
with increasing clogP bin.

Collectively, these results suggest that a greater emphasis on
structural considerations will be needed to generate reliable SAR
for in vivo clearance, at least compared to more physical
property controlled ADMET processes.

2.5. Toxicity. 2.5.1. hERG Inhibition. Inhibition of the
voltage gated potassium ion channel, a trans-membrane protein
encoded by the hERG gene, is known to be undesirable due to
the possibility of QT prolongation, which can lead to fatal
cardiac arrhythmia.73 This has led to the development of in vitro
assays within the pharmaceuticals industry to screen for the
problem early on in the development process.74

From an analysis of the 35200 molecules screened in a hERG
inhibition assay in GSK, we can see that, as MWT increases,
the mean pIC50 on average increases (Figure 8a). These findings
are in line with QSAR studies by Aptula et al.,75 who showed

that the maximum distance in a molecule, a size indicator, in
conjunction with logD, gave qualitative discrimination of a set
of 19 hERG inhibitors. Furthermore, pharmacophoric models
generated by Ekins et al.76 contained four hydrophobic features
and models by Keseru77 contained three, suggesting larger
molecules have a greater tendency to occupy the hERG active
site.

Ionization state is also important in defining the types of
compounds that inhibit hERG, which might be expected due to
its role in transporting K+ ions. Neutral and acidic78,79 molecules
have lower hERG inhibition on average compared to basic or
zwitterionic molecules, which is in agreement with the findings
of others that a strong basic center is generally required for
potent hERG inhibitors15,75–80 (Figure 8b).

Figure 7. (a-c) Relationship between in vivo clearance and MWT
(top), ionization state (middle), and the combination of clogP and
ionization state (bottom) for 11490 molecules measured in the respective
assays. The coloring system is the same as that in Figure 2.
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Also in line with a number of literature studies is the finding
that as clogP increases, the hERG pIC50 on average increases,75–77

and this difference is not simply due to increases in MWT.
Breaking the data down by ionization state reveals distinct
differences; the mean pIC50s of neutral and acidic molecules
do not change dramatically with increasing clogP bin, in contrast
to basic and zwitterionic molecules (Figure 8c). This might be
expected, because the basic pharmacophoric feature has not been
matched. It is also apparent from Figure 8c that basic molecules
will have a greater liability on average, irrespective of the clogP.
For example, basic molecules with a clogP > 5 have a mean
pIC50 of 5.8, compared to 5.4 when the clogP is between 3 and
5 and 5.0 when the clogP < 3. In contrast, the mean pIC50 of
clogP > 5 neutral molecules is just 4.6.

2.5.2. Cytochrome P450 Inhibition. Cytochromes P450s are
a family of diverse heme-containing proteins that catalyze the
metabolism of a broad range of molecules of both exogenous
and endogenous origin81–83 and are implicated in toxicological
events.84 Should two or more drugs be administered concomi-
tantly, with one being a potent P450 substrate or inhibitor,84

the metabolism of the other drug may be inhibited, causing its
plasma levels to rise, which may lead to undesirable toxic
effects. An additional complication is that a molecule that is
shown to be P450 substrate may in fact pose a toxicity risk,
not a result of the parent molecule itself, but due to the reactive
metabolite formed.

The inhibition of cytochrome P450s 1A2, 2C9, 2C19, 2D6,
and 3A4 are the focus here, with these isoforms making up
approximately 60% of the total hepatic CYPs85,86 and being
accountable for the metabolism of the majority of known
drugs.87 While the results reported here are for P450 inhibitors,
it might be expected that we can generalize the results to
substrates or inducers also given that these must typically bind
effectively within the active site and, thus, should show common
trends.88

2.5.2.1. P450 1A2 Inhibition. Cytochrome P450 1A2 ac-
counts for approximately 13% of hepatic P450s86 and is
implicated in the metabolism of drug molecules such as
paracetamol and phenacetin, as well as caffeine.89 From an
analysis of the 49837 molecules with measured 1A2 pIC50s one
finds that as the MWT increases the pIC50 on average decreases
(Figure 9a). These results indicate that increasing the size of a
molecule will on average lead to a decrease in 1A2 liability, in
contrast to the other CYP isoforms considered herein. This
finding is in agreement with the recently reported crystal
structure of 1A2, which displays a narrow cavity of limited
volume compared to other isoforms.90 The results are also
broadly in line with the results of Burton et al.91 who found
that size and aromaticity were the key features discriminating
inhibitors and noninhibitors. Collectively, these results suggest
that steric factors associated with the 1A2 active size restrict
all but the smallest molecules from binding effectively.91,92

Ionization state plays a relatively small role in determining
the extent of 1A2 inhibition when compared to MWT (Figure
9b) and this can be rationalized by the lack of ionized residues
capable of ligand interaction within the active site crystal
structure.90 The differences in the means, while small, are all
statistically significant due to the large number of observations
in each category. Neutral molecules have the highest 1A2 pIC50s
on average, followed by bases, acids, and finally zwitterions.

Descriptors describing the ionization state have not appeared
in 1A2 QSAR models, which may help to confirm the findings
above. Furthermore, from COMFA models built on 52 naph-
thalene, lactone, and quinoline derivatives, Korhonen93 con-
cludes that the 1A2 active is primarily composed of hydrophobic
and aromatic residues. This might explain the small variation
in the mean pIC50s for the different ionization states found in
Figure 9b.

Lipophilicity has been implicated in 1A2 inhibition elsewhere
in the literature,93 however, here we can see that it has a
relativity weak effect on the extent of inhibition compared to
MWT (Figure 9c). clogP also has a subtly different effect on
the different ionization states, with neutral molecules having
the largest mean pIC50 when the clogP is between 3 and 5, basic
molecules having the maximum liability when the clogP is >3
and acids having the maximum liability when the clogP > 5.
The situation is less clear for zwitterionic molecules due to the
relatively small number of observations and due to confounding

Figure 8. (a-c) Relationship between hERG inhibition and MWT
(top), ionization state (middle), and a combination of clogP and
ionization state (bottom), for 35200 molecules with measured values.
The coloring system is the same as that in Figure 2.
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MWT effects in the zwitterionic clogP < 3 bin as a result of
certain chemotypes.

2.5.2.2. P450 2C9 Inhibition. The cytochrome P450 2C
family accounts for approximately 20% of hepatic P450s,86 and
cytochrome P450 2C9 in particular is implicated in the
metabolism of drug molecules such as phenytoin, tolbutamide,
and warfarin.94 From an analysis of 51097 molecules with
measured 2C9 pIC50s one finds that MWT plays an important
role in determining the extent of 2C9 inhibition. Unlike hERG,
which shows a linear increase in affinity with MWT, or 1A2,
which shows a linear decrease, 2C9 shows a parabolic effect.
Molecules with MWTs between 300 and 700 are the most potent
on average at 2C9, suggesting steric factors associated with the
2C9 active size generally prevent very large or very small
molecules from binding optimally (Figure 9d).

Ionization state plays an important role in determining the
extent of 2C9 inhibition. Neutral and acidic molecules94 have
the highest 2C9 affinity on average (Figure 9e), followed by
bases and zwitterions. From crystallography data, Williams et
al.95 reported that no basic residues critical for binding the acidic
warfarin molecule were found in the 2C9 active site to explain
the increased affinity of acids. However, Wester et al. report
that Arg108 plays an important role in binding the acidic
molecule flurbiprofen,96 this being found in a catalytically active
conformation, unlike the former.

In terms of lipophilicity, one finds that as clogP increases
2C9 inhibition on average increases94 and this difference is not
simply due to increases in MWT. Molecules with clogP < 3
have a mean pIC50 of 4.6, those with clogP between 3 and 5
have a mean value of 4.9, while those with clogP > 5 have a

Figure 9. (a-f) Relationship between CYP-1A2 inhibition (a-c) and CYP-2C9 inhibition (d-f) with respect to MWT (top), ionization state
(middle), and a combination of clogP and ionization state (bottom) for 49837 and 51097 molecules measured in the respective assays. The coloring
system is the same as that in Figure 2.
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mean of 5.2. The dependency between 2C9 inhibition and clogP
is broadly the same when broken down by ionization state
(Figure 9f), however, the magnitude of the potency change is
more pronounced for neutral and acidic molecules compared
to bases or zwitterions.

2.5.2.3. P450 2C19 Inhibition. Cytochrome P450 2C19 is
also a member of the 2C family86 implicated in the metabolism
of drugs molecules such as omeprazole, propranalol, and
diazapam.94 From an analysis of the SAR derived from 48464
molecules with measured 2C19 pIC50s one finds that inhibition
shows little dependence on MWT, even though this isoform is
structurally very similar (91%)97 to 2C9 discussed in the
previous section (Figure 10a). These results suggest the steric
requirements imposed on substrates/inhibitors by the 2C19 active
size are very subtle compared to those found for the other
isoforms considered here. It may alternatively mean that

molecular recognition is more important for determining the
affinity for 2C19.

The ionization state of a molecule also seemed to be of only
minor importance in determining the extent of inhibition of
2C19. Neutral molecules have slightly higher mean 2C19 pIC50s
(4.8), followed by bases (4.7), zwitterions (4.5), and acids (4.4)
(Figure 10b). Furthermore, while 2C9 and 2C19 are structurally
similar, a key observation from this analysis and others is that
2C19 does not have the same affinity for acids as that found
for 2C9.98

From Figure 10c, one can see that as the clogP increases 2C19
inhibition on average increases.94 The dependency between
2C19 inhibition and clogP is essentially the same broken down
by ionization state, as would be expected given the minor effect
of the latter.

Figure 10. (a-f) Relationship between CYP-2C19 inhibition (a-c) and CYP-2D6 inhibition (d-f) with respect to MWT (top), ionization state
(middle), and a combination of clogP and ionization state (bottom) for 48464 and 50886 molecules measured in the respective assays. The coloring
system is the same as that in Figure 2.
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2.5.2.4. P450 2D6 Inhibition. Cytochrome P450 2D6 ac-
counts for just 2% of hepatic P450s,86 however, it is a very
important isoform that is implicated in the metabolism of drug
molecules such as codeine, ondansetron, and quinidine.89,94

From an analysis of the 50886 molecules with measured 2D6
pIC50s one finds that inhibition has a weak but clearly evident
parabolic relationship with MWT, similar to that observed for
2C9 (Figure 10d). Similarly, this also suggests steric factors
associated with the 2D6 active generally prevent very large or
very small molecules from binding optimally.

Basic molecules99,100 have the highest mean 2D6 pIC50s,
followed by zwitterions, neutral molecules, and finally acidic
molecules (Figure 10e). This result is in line with X-ray
crystallography data, which indicates that an acidic residue
(Asp301) in the active site is capable of hydrogen bonding to
bound inhibitors or substrates.101

Analysis of Figure 10f shows that as lipophilicity increases
2D6 inhibition on average increases, and this difference is not
simply due to increases in MWT. The dependency between 2D6
inhibition and clogP is somewhat different when broken down
by ionization state, with an increase in clogP having a larger
effect on neutral, basic, and zwitterionic molecules compared
to that of acids. This would be expected due to the acidic nature
of the active site.

2.5.2.5. P450 3A4 Inhibition. The cytochrome P450 3A
family accounts for approximately 30% of hepatic P450s, with
the 3A4 isoform being the most abundant.86 Cytochrome P450
3A4 is implicated in the metabolism of drug molecules such as
ketoconazole, lidocaine, and erythromycin.89,94

From an analysis of 42987 molecules with measured 3A4
pIC50s, one finds that as MWT increases inhibition on average
increases (Figure 11a). The MWT dependence of 3A4 is
markedly different to the other four CYP isoforms discussed
thus far, with no mean drop in potency observed. Surprisingly,
the MWT > 700 bin has the same mean pIC50 value as the
500–700 bin, indicating the 3A4 active site is considerably larger
than those of the other isoforms considered here.102 Based on
an X-ray crystallography study by Williams et al.,103 this does
not appear to be the case. However, a more recent paper by
Yano et al.104 highlighted that while the active site may be the
same, the cavity toward the heme is considerably larger than
that of other isoforms. Furthermore, studies by Ekroos et al.105

show that the cavity has the potential to expand considerably
on substrate/inhibitor binding.

Ionization state plays a role in determining the extent of
inhibition, with neutral molecules having the higher 3A4 pIC50s
on average (5.2) than bases or zwitterions (5.1 and 5.0,
respectively), which are in turn larger than acids (4.7; Figure
11b). The mean potency of bases is larger than acids and almost
equivalent to neutral molecules for a given clogP, suggesting
that a specific interaction with an acidic residue in the active
site may be possible.

3A4 shows the characteristic dependency on lipophilicity,
with the mean 3A4 pIC50 increasing as the clogP bin increases,
and it is not simply due to increases in MWT (Figure 11c).
This result might be expected given the phenylalanine cluster
that plays an important role in defining the 3A4 active site and
also based on the results from pharmacophoric modeling where
multiple hydrophobic features are usual.14,106

2.6. Rules of Thumb for a Given Set Molecular Pro-
perties. From the results reported herein, one can qualitatively
predict the ADMET issues most likely to be experienced for a
molecule based on its clogP, MWT, and ionization state, without
the need for complex computer simulations. The likelihood of

a molecule having a particular ADMET parameter above
average, average, or less than average is reported in Table 3.
Because it is clear that almost all ADMET parameters increase
with either increasing MWT and/or clogP, a single combined
clogP/MWT category has been used for simplicity. Molecules
lie in the more desirable category if both MWT < 400 and clogP
< 4, while they are classified as less-desirable should one or
more of the parameter lie above the cut-offs.

If we take a hypothetical program series consisting of a
neutral chemotype with a low clogP and MWT as an example,
one would expect it to have average solubility, higher than
average permeability (unless clogP < 3), average protein
binding, lower than average hERG inhibition, and higher than
average 1A2 inhibition (although the average 1A2 pIC50 is just
4.5). If, for example, an increase in solubility and a decrease in
CNS penetration were required, and assuming the particular

Figure 11. (a-c) Relationship between CYP-3A4 inhibition and MWT
(top), ionization state (middle), and a combination of clogP and
ionization state (bottom) for 42987 molecules with measured values.
The coloring system is the same as that in Figure 2.
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receptor pharmacophore would allow such a change, one might
choose to introduce an acidic group. From Table 3c one would
expect that the CNS penetration would decrease on average and
solubility would increase on average, as desired. However,
undesired effects of this structural change would be that the
AM permeability would be expected to decrease on average,
as would the volume of distribution, while the plasma protein
binding would increase on average.

If we take a second hypothetical program, consisting of a
neutral chemotype with a clogP of 4 and a MWT of 400 (Table
3a), where an increase in the potency is required, the MWT
would generally be expected to increase during LO.107 Thus,
one would therefore have an expectation that the following
ADMET parameters in particular would change; the solubility
would decrease, the permeability would decrease, especially if
the clogP strayed above 5, and an increase in protein binding
and increased CYP inhibition on average would be observed.

It can be seen from the hypothetical examples above that the
rather simplistic modeling used here has the advantage of
allowing us to make cross comparisons between a large number
of ADMET assays. It then becomes easy to assess in a
qualitative fashion how changes in the key physicochemical
parameters will impact each of the different ADMET parameters
in a particular program series. This is a key limitation of
multivariate models derived with different 1D, 2D, and 3D
molecular descriptors.

This simplicity can be useful in a lead optimization environ-
ment where one does not optimize ADMET parameters in
isolation. Such simple rules could also be used in the Hit-to-
Lead stage to identify the likely ADMET issues of a given lead,
allowing resources to be more effectively directed to the areas
identified before the molecule enters lead optimization.

3. Conclusions

Described herein are a set of simple, consistent analyses that
have been performed on a range of comprehensive ADMET
data sets in an effort to improve our general understanding of
the main ADMET processes. These rules are consistent with
reports in the literature and can be used to supplement the more
complex, predictive in-silico models available to us.

The simple rules have been derived using large numbers of
measurements from multiple ADMET assays run within GSK.
MWT and logP are the two key characteristics that determine
ADMET liabilities, with some ADMET parameters depending
more on MWT and some on logP. Increasing values in either
parameter are generally detrimental to more than one ADMET
parameter. One might also expect that the multitude of other
pharmacokinetic and toxicity parameters not routinely measured
will show a similar dependency. Ionization state can have either
a beneficial or a detrimental affect depending on the parameter
in question.

4. Experimental Section

4.1. Experimental Data. Experimental data from 15 different
ADMET assays run within GSK were extracted from our in-house
database. A description of the GSK assays employed here can be
found in the following references: Solubility,111 Permeability,43 Oral
Bioavailablity,112–114 Volume of Distribution,112,114–116 Plasma
Protein Binding,117 CNS Penetration,118 P-gp efflux,118 Brain
Tissue Binding,118 In-vivo Clearance112115,116, hERG Inhibition,119

P450 Inhibition.120 Approximately 1.0 million measurements in total
were available for ∼300000 unique molecules. Replicate measure-
ments in a given assay were transformed to a linear scale and
averaged (Table 1). The number of molecules measured in each

Table 3. Indication of How Changes in Key Molecular Properties will
Affect a Range of ADMET Parametersa

a Expressed relative to the mean value of the data sets. MWT and clogP
cut-offs of 400 and 4, respectively, are used. * Optimum clogP bin is 3–5
with respect to permeability. ** Average to high volumes rather than high,
low, or average generally considered optimum. *** Low CNS considered
optimum, although for targets in the brain, this will be reversed. **** Some
isoforms show a nonlinear relationship with clogP and/or MWT. These are
guides only. For greater detail, look at the individual ADMET ANOVA
graphs found in the text or the tables reported in the Supporting Information.
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assay ranges from ∼1000 to ∼50000, spanning a large range in
response values and representing a structurally diverse chemical
space.

The data sets were acquired over a period of 1-5 years. Data
reported in older variants of a particular assay (e.g., having a
different end point detection method or probe) were combined
where the interassay correlation was sufficiently strong. Inclusion
criteria for P450 data, for example, were given the intra-assay
variability of ∼2-fold error, older assay variants needed to show
interassay variability of ∼3-fold to be combined. The final step in
the data set definition process was to remove any measurement
reported with an adverse comment or modifier (</>/∼), giving
rise to the number of datapoints reported in the text.

4.2. Molecular Descriptors. Twelve commonly used descriptors
were computed using a combination of in-house and commercial
software (Table 2),23 including calculated logP and logD from
ACD122 and additional properties via Daylight.123 The descrip-
tors computed are quite comprehensive, governing the key bulk
characteristics of a molecule. As it is the desire here to formulate
a set of simple rules using a consistent set of descriptors across
all assays, we therefore require the smallest number that
describes the greatest amount of structural variability. This was
achieved by building a PCA18–22 model on ∼30000 diverse GSK
molecules for which the 12 descriptors in Table 2 had been
computed.

As we make changes to the structure of a given chemical in a
series through the addition of a variety of substituents at different
positions, each of the commonly used interpretable descriptors in
Table 2 will change, and these changes are often correlated. Thus,
it becomes difficult to fully account for the multidimensional
changes in structure. For example, as one increases the number of
hydrogen bond acceptors, the clogP will generally decrease and
the PSA will increase. This means there is significant redundancy
in the descriptors commonly used.

Fortunately, the correlated nature of the structural and electronic
changes makes this problem highly amenable to PCA. PCA is a
statistical method that can be used to reduce the amount of data to
be analyzed by exploiting the correlated nature of the variables
within the data set. Linear combinations of the correlated variables
are chosen such that the majority of the variance of the original
data can be described by a smaller number of orthogonal components.

The PCA model was generated in SIMCA-P10108 using the
default settings.

4.3. Statistical Analyses. ANOVA is the technique used to
assess the statistical significance of the relationship between the
experimental ADMET parameters and the properties identified from
the PCA model. In one-way and factorial ANOVA used here a
test is performed to assess the statistical significance of the
differences in the means of particular ADMET parameter when
broken down into different groups. Results are considered statistical
significance here if found above the 99.9% confidence level. This
means there is a 1 in 1000 chance that the observed effect is not
real.

The three descriptors identified from the PCA model were
binned into between three and four separate categories for the
analysis, the cut-offs chosen to ensure that a sufficiently large
number of observations were present in each bin to make the
statistical tests reliable: (a) MWT bin (<300, 300–500, 500–700,
and >700), (b) ionization state (neutral, base, acid, and zwit-
terions), and (c) ACD clogP109 bin (<3, 3–5, >5). The MWT
and clogP bins were chosen to ensure that the observations were
relatively evenly distributed.

The ANOVA results were assessed in terms of (a) MWT, (b)
ionization state, and (c) clogP and ionization state combined and
are presented graphically. The latter combination was investigated
as ionization state often affects a particular parameter above the
effect on logD. In this way, both affects can be clearly seen. All
effects are significant, except where discussed.

To assess whether there is an independent effect from clogP and
MWT on a given ADMET parameter, the impact of MWT above

any change in clogP has been assessed in all cases using the property
binning scheme described and ANOVA.

ANOVA calculations were performed in Statistica 7110 using
the default settings.

Acknowledgment. The author would like to thank Drs. Anne
Hersey, Mike Hann, Andrew Leach, and Paul Faulder for
carefully reading the manuscript and for making useful sug-
gestions to improve it. The author would also like to thank Drs.
Sandeep Modi, Colin Edge, Iain McLay, Andrew Brewster, Paul
Smith, Rod Porter, Andy Gribble, Philip Jeffrey, and Peter
Lovell for helpful discussions on the subject matter.

Note Added after ASAP Publication. This manuscript was
released ASAP on January 31, 2008 with the wrong image for
Figure 8. The corrected version was posted on February 7, 2008.

Supporting Information Available: Tables with the ANOVA
model results are provided (means, confidence intervals, etc.), a
plot illustrating the relationship between pKa and ionization state,
and the scores plot associated with the PCA plot illustrated in
Figure 1 are provided. This material is available free of charge via
the Internet at http://pubs.acs.org.

References

(1) Grandison, M. K.; Boudinot, F. D. Age-related changes in protein
binding of drugs. Implications for therapy. Clin. Pharmacokinet.
2000, 38, 271–290.

(2) Benet, L. Z.; Hoener, B. A. Changes in plasma protein binding have
little clinical relevance. Clin. Pharmacol. Ther. 2002, 71, 115–121.

(3) Viskin, S. Long QT syndromes and torsade de pointes. Lancet 1999,
354, 1625–1633.

(4) Rettie, A. E.; Korzekwa, K. R.; Kunze, K.; Lawrence, R. F.; Eddy,
A. C.; Aoyama, T.; Gelboin, H. V.; Gonzalez, F. J.; Trager, W. F.
Hydroxylation of warfarin by human cDNA-expressed cytochrome
P450: a role for P-4502C9 in the etiology of (S)-warfarin-drug
interactions. Chem. Res. Toxicol. 1992, 5, 54–59.

(5) Norinder, U.; Bergstrom, C. A. S. Prediction of ADMET properties.
ChemMedChem 2006, 1, 920–937.

(6) Hou, T.; Wang, J.; Zhang, W.; Wang, W.; Xu, X. Recent advances
in computational prediction of drug absorption and permeability in
drug discovery. Curr. Med. Chem. 2006, 13, 2653–2667.

(7) Chohan, K. K.; Paine, S. W.; Waters, N. J. Quantitative structure-
activity relationships in drug metabolism. Curr. Top. Med. Chem.
2006, 6, 1569–1578.

(8) De Groot, M. Designing better drugs: Predicting cytochrome P450
metabolism. Drug DiscoVery Today 2006, 11, 601–606.

(9) Hansch, D.; Leo, A.; Mekapati, S. B.; Kurup, A. QSAR and ADME.
Bioorg. Med. Chem. 2004, 12, 3391–3400.

(10) Lombardo, F.; Gifford, F.; Shalaeva, M. Y. in-silico ADME
prediction: Data, models, facts, and myths. Mini-ReV. Med. Chem.
2003, 3, 861–875.

(11) Hall, L. H.; Kier, L. B. Electrotopological state indices for atoms
types: A Novel combination of electronic, topological, and valence
state information. J. Chem. Inf. Comput. Sci. 1995, 35, 1039–1045.

(12) Burden, F. R. Molecular identification number for substructure
searches. J. Chem. Inf. Comput. Sci. 1989, 29, 225–227.

(13) Pearlman, R. S.; Smith, K. M. Novel software tools for chemical
diversity. Perspect. Drug DiscoVery Des. 1998, 9, 339–353.

(14) deGroot, M.; Ekins, S. Pharmacophore modeling of cytochromes
P450. AdV. Drug DeliVery ReV. 2002, 54, 367–383.

(15) Cavalli, A.; Poluzzi, E.; De Ponti, F.; Recanatini, M. Toward a
pharmacophore for drugs inducing the long QT syndrome: Insights
from a CoMFA study of HERG K+ channel blockers. J. Med. Chem.
2002, 45, 3844–3853.

(16) Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J.
Experimental and computational approaches to estimate solubility
and permeability in drug discovery and development settings. AdV.
Drug DeliVery ReV. 1997, 23, 3–25.

(17) Van de Waterbeemd, H.; Camenisch, G.; Folkers, G.; Chretien, J. R.;
Raevsky, O. A. Estimation of blood-brain barrier crossing of drugs
using molecular size and shape, and H-bonding descriptors. J. Drug
Targeting 1998, 6, 151–165.

(18) Höskuldsson, A. Prediction Methods in Science and Technology; Thor
Publishing: Copenhagen, Denmark, 1996.

(19) Wold, S.; Geladi, P.; Esbensen, K.; Öhman, J. J. Multi-way principal
components-and PLS-analysis. J. Chemom. 1987, 1, 41–46.

Generation of a Set of ADMET Rules of Thumb Journal of Medicinal Chemistry, 2008, Vol. 51, No. 4 831



(20) Wold, H. Path models with latent variables: The NIPALS approach.
In QuantitatiVe Sociology: International perspectiVes on mathematical
and statistical model building; Academic Press: New York, 1975;
pp 307–357.

(21) Wold, S.; Albano, C.; Dunn, W. J.; Edlund, U., Esbensen, K.; Geladi,
P.; Hellberg, S.; Johansson, E.; Lindberg, W.; Sjöström, M. Multi-
variate data analysis in chemistry. In Chemometrics: Mathematics
and statistics in chemistry; Kowalski, B. R. Ed.; D. Reidel Publishing
Company: Dordrecht, Holland, 1984.

(22) Wold, S.; Eriksson, L.; Sjöström, M. PLS in Chemistry, Encyclopedia
of Computational Chemistry, Wiley: New York, 2000.

(23) Gleeson, M. P. Plasma protein binding affinity and its relationship
to molecular structure: An in-silico analysis. J. Med. Chem. 2007,
50, 101–112.

(24) An advantage of the ANOVA method used here is that one can
directly compare results across all the assays studied in a simple
manner, which would be difficult if different descriptors, cut-offs,
or modelling methods were employed in each case. However, it
should be noted that the independent effect of descriptors, such as
clogP and MWT, may not be picked up due to the crude way they
are used in this study (small numbers of binned values rather than
continuous descriptors). In cases where the effect of each variable is
different, this might not be seen at the 99.9% confidence level due
to the limitation of the descriptors but also due to low numbers of
observation.

(25) Kerns, E. H.; Di, L. Physicochemical profiling: overview of the
screens. Drug DiscoVery Today 2004, 1, 343–348.

(26) Abraham, M. H.; Le, J. The correlation and prediction of the solubility
of molecules in water using an amended solvation energy relationship.
J. Pharm. Sci. 1999, 88, 868–880.

(27) Votano, J. R.; Parham, M.; Hall, L. H.; Kier, L. B. New predictors
for several ADME/Tox properties: Aqueous solubility, human oral
absorption, and Ames genotoxicity using topological descriptors. Mol.
DiVersity 2004, 8, 379–391.

(28) Hansen, N. T.; Kouskoumvekaki, I.; Jørgensen, F. S.; Brunak, S.;
Jonsdottir, S. O. Prediction of pH-dependent aqueous solubility of
druglike molecules. J. Chem. Inf. Model. 2006, 46, 2601–2609.

(29) Delaney, J. S. ESOL: Estimating aqueous solubility directly from
molecular structure. J. Chem. Inf. Comput. Sci. 2004, 44, 1000–1005.

(30) Ran, Y.; Yalkowsky, S. H. Prediction of drug solubility by the general
solubility equation (GSE). J. Chem. Inf. Comput. Sci. 2001, 41, 354–
357.

(31) Kansy, M.; Senner, F.; Gubernator, K. Physicochemical high
throughput screening: Parallel artificial membrane permeation assay
in the description of passive absorption processes. J. Med. Chem.
1998, 41, 1007–1010.

(32) Cho, M. J.; Thompson, D. P.; Cramer, C. T.; Vidmar, T. J.; Scieszka,
J. F. The Madin-Darby canine kidney (MDCK) epithelial cell
monolayer as a model cellular transport barrier. Pharm. Res. 1989,
6, 71–77.

(33) Yee, S. In vitro permeability across Caco-2 cells (colonic) can predict
in vivo (small intestinal) absorption in mansfact or myth. Pharm.
Res. 1997, 14, 763–766.

(34) Camenisch, G.; Alsenz, J.; van de Waterbeemd, H.; Folkers, J.
Estimation of permeability by passive diffusion through Caco-2 cell
monolayers using the drugs’ lipophilicity and molecular weight. Eur.
J. Pharm. Sci. 1998, 6, 313–319.

(35) van de Waterbeemd, H. G.; Camenisch, G.; Folkers, O. A.; Raevsky.
Estimation of Caco-2 cell permeability using calculated molecular
descriptors. Quant. Struct.-Act. Relat. 1996, 15, 480–490.

(36) Bergström, C. A. S.; Strafford, M.; Lazorova, L.; Avdeef, A.;
Luthman, K.; Artursson, P. Absorption classification of oral drugs
based on molecular surface properties. J. Med. Chem. 2003, 46, 558–
570.

(37) Tantishaiyakul, V. Prediction of Caco-2 cell permeability using partial
least square multivariate analysis. Pharmazie 2001, 56, 407–411.

(38) Riley, R. J.; Martin, I. J.; Cooper, A. E. The influence of DMPK as
an integrated partner in modern drug discovery. Curr. Drug Metab.
2002, 3, 527–550.

(39) Martinez, M. N.; Amidon, G. L. A mechanistic approach to
understanding the factors affecting drug absorption: A review of
fundamentals. J. Clin. Pharmacol. 2002, 42, 620–643.

(40) Turner, J. V.; Glass, B. D.; Agatonovic-Kustrin, S. Prediction of drug
bioavailability based on molecular structure. Anal. Chim. Acta 2003,
485, 89–102.

(41) Yoshida, F.; Topliss, J. G. QSAR Model for Drug Human Oral
Bioavailability. J. Med. Chem. 2000, 43, 2575–2585.

(42) Martin, Y. C. A Bioavailability Score. J. Med. Chem. 2005, 48, 3164–
3170.

(43) Veber, D. F.; Johnson, S. R.; Cheng, H.; Smith, B. R.; Ward, K. W.;
Kopple, K. D. Molecular properties that influence the oral bioavail-
ability of drug candidates. J. Med. Chem. 2002, 45, 2615–2623.

(44) Gleeson,M.P. InsilicohumanandratVss quantitativestructure-activity
relationship models. J. Med. Chem. 2006, 49, 1953–1963.

(45) Lombardo, F.; Obach, R. S.; Shalaeva, M. Y.†; Gao, F. Prediction
of volume of distribution values in humans for neutral and basic drugs
using physicochemical measurements and plasma protein binding
data. J. Med. Chem. 2002, 45, 2867–2876.

(46) Ghafourian, T.; Barzegar-Jalali, M.; Hakimiha, N.; Cronin, M. T. D.
Quantitative structure-pharmacokinetic relationship modelling: Ap-
parent volume of distribution. J. Pharm. Pharmacol. 2004, 56, 339–
350.

(47) Hitchcock, S. A.; Pennington, L. D. Structure-brain exposure
relationships. J. Med. Chem. 2006, 49, 7559–7583.

(48) Gerebtzoff, G.; Seelig, A. In silico prediction of blood-brain barrier
permeation using the calculated molecular cross-sectional area as
main parameter. J. Chem. Inf. Model. 2006, 46, 2638–2650.

(49) Platts, J. A.; Abraham, M. H.; Zhao, Y. H.; Hersey, A.; Ijaz, L.;
Butina, D. Correlation and prediction of a large blood-brain distribu-
tion data set—an LFER study. Eur. J. Med. Chem. 2001, 36, 719–
730.

(50) Clark, D. E. Rapid calculation of polar molecular surface area and
its application to the prediction of transport phenomena. 2. Prediction
of blood-brain barrier penetration. J. Pharm. Sci. 1999, 88, 815–
821.

(51) Seelig, A. A general pattern for substrate recognition by P-
glycoprotein. Eur. J. Biochem. 1998, 251, 252–261.

(52) Zhang, E. Y.; Phelps, M. A.; Cheng, C.; Ekins, S.; Swaan, P. W.
Modeling of active transport systems. AdV. Drug DeliVery ReV. 2002,
54, 329–354.

(53) Gombar, V. K.; Polli, J. W.; Humphreys, J. E.; Wring, S. A.; Serabjit-
Singh, C. S. Predicting P-glycoprotein substrates by a quantitative
structure-activity relationship model. J. Pharm. Sci. 2004, 93, 957–
968.

(54) Bain, L. J.; LeBlanc, G. A. Interaction of structurally diverse
pesticides with the human MDR1 gene product P-glycoprotein.
Toxicol. Appl. Pharmacol. 1996, 141, 288–298.

(55) Litman, T.; Zeuthen, T.; Skovsgaard; T.; Stein, W. D. Structure-activity
relationships of P-glycoprotein interacting drugs: Kinetic character-
ization of their effects on ATPase activity. Biochim. Biophys. Acta
1997, 1361, 159–168.

(56) Klippert, P.; Borm, P.; Noordhoek, J. Prediction of intestinal firstpass
effect of phenacetin in the rat from enzyme kinetic data-correlation
with in vivo data using mucosal blood flow. Biochem. Pharmacol.
1982, 31, 2545–2548.

(57) Oie, S.; Tozer, T. N. Effect of altered plasma protein binding on
apparent volume of distribution. J. Pharm. Sci. 1979, 68, 1203–1205.

(58) Abraham, M. H. Scales of solute hydrogen bonding: Their construc-
tion and application to physicochemical and biological processes.
Chem. Soc. ReV. 1993, 22, 73–83.

(59) Davis, A. M.; Riley, R. Impact of physical organic chemistry on the
control of drug-like properties. In Drug design cutting edge; Flower
D. R., Ed.; Royal Society of Chemistry: Cambridge, U.K., 2002; pp
106–123.

(60) Valko, K.; Nunhuck, S.; Bevan, C.; Abraham, M. H.; Reynolds, D. P.
Fast gradient HPLC method to determine molecules binding to human
serum albumin. Relationships with octanol/water and immobilized
artificial membrane lipophilicity. J. Pharm. Sci. 2003, 92 (11), 2236–
2248.

(61) Kratochwil, N. A.; Huber, W.; Muller, F.; Kansy, M.; Gerber, P. R.
Plasma protein binding of drugs. A new approach. Biochem.
Pharmacol. 2002, 64, 1355–1374.

(62) Colmenarejo, G.; Alvarez-Pedraglio, A.; Lavandera, J. L. Chemin-
formatic models to predict binding affinities to human serum albumin.
J. Med. Chem. 2001, 44, 4370–4378.

(63) Lobell, M.; Sivarajah, V. In silico prediction of aqueous solubility,
human plasma protein binding and volume of distribution of
molecules from calculated pKa and AlogP98 values. Mol. DiVersity
2003, 7, 69–87.

(64) Yamakazi, K.; Kanaoka, M. Computational prediction of plasma
protein binding percent of diverse pharmaceutical molecules.
J. Pharm. Sci. 2004, 93, 1480–1494.

(65) Saiakhov, R. D.; Stefan, L. R.; Klopman, G. Multiple computer-
automated structure evaluation model of plasma protein binding
affinity of diverse drugs. Perspect. Drug DiscoVery Des. 2000, 19,
133–155.

(66) Kalvass, J. C.; Maurer, T. S. Influence of nonspecific brain and plasma
binding on CNS exposure: implications for rational drug discovery.
Biopharm. Drug Dispos. 2002, 23, 327–338.

(67) Austin, R. P.; Barton, P.; Mohmed, S.; Riley, R. J. The binding of
drugs to hepatocytes and its relationship to physicochemical proper-
ties. Drug Metab. Dispos. 2005, 333, 419–425.

832 Journal of Medicinal Chemistry, 2008, Vol. 51, No. 4 Gleeson



(68) Yokogawa, K. K.; Ishizaki, J.; Ohkuma1, S.; Miyamoto, K. Influence
of lipophilicity and lysosomal accumulation on tissue distribution
kinetics of basic drugs: A physiologically based pharmacokinetic
model. Methods Find. Exp. Clin. Pharmacol. 2002, 24, 81–93.

(69) Madden, J. C.; Cronin, T. D. Structure-based methods for the
prediction of drug metabolism. Expert Opin. Drug Metab. Toxicol.
2006, 2, 545–557.

(70) Kalgutkar, A. S.; Gardner, I.; Obach, R. S.; Shaffer, C. L.; Callegari,
E.; Henne, K. R.; Mutlib, A. E.; Dalvie, D. K.; Lee, J. S.; Nakai, Y.;
O’Donnell, J. P.; Boer, J.; Harriman, S. P. A comprehensive listing
of bioactivation pathways of organic functional groups. Curr. Drug
Metabol. 2005, 6, 161–225.

(71) Klippert, P.; Borm, P.; Noordhoek, J. Prediction of intestinal first-
pass effect of phenacetin in the rat from enzyme kinetic datasCorrela-
tion with in vivo data using mucosal blood flow. Biochem. Phar-
macol. 1982, 31, 2545–2548.

(72) Grime, K.; Riley, R. J. The impact of in vitro binding on in
vitro-in vivo extrapolations, projections of metabolic clearance,
and clinical drug-drug interactions. Curr. Drug Metab. 2006, 7,
251–264.

(73) Viskin, S.; Long, Q. T. Syndromes and torsade de pointes. Lancet
1999, 354, 1625–1633.

(74) Witchel, H. J.; Milnes, J. T.; Mitcheson, J. S.; Hancox, J. C.
Troubleshooting problems with in vitro screening of drugs for QT
interval prolongation using HERG K+ channels expressed in
mammalian cell lines and Xenopus oocytes. J. Pharmacol. Toxicol.
Methods 2002, 48, 65–80.

(75) Aptula, A. O.; Cronin, M. T. D. Prediction of hERG K+ blocking
potency: Application of structural knowledge. SAR QSAR EnViron.
Res. 2004, 15, 399–411.

(76) Ekins, S.; Crumb, W. J.; Sarazan, R. D.; Wikel, J. H.; Wrighton,
S. A. Three-dimensional quantitative structure-activity relationship
for inhibition of human ether-a-go-go-related gene potassium channel.
J. Pharmacol. Exp. Ther. 2002, 301, 427–434.

(77) Keseru, G. M. Prediction of hERG potassium channel affinity by
traditional and hologram QSAR methods. Bioorg. Med. Chem. Lett.
2003, 13, 2773–2775.

(78) Vaz, R. J.; Li, Y.; Rampe, D. Human ether-a-go-go related gene
(HERG): A chemist’s perspective. Prog. Med. Chem. 2005, 43, 1–
18.

(79) Zhu, B.; Jia, Z. J.; Zhang, P.; Su, T.; Huang, W.; Goldman, E.; Tumas,
D.; Kadambi, V.; Eddy, P.; Sinha, U.; Scarborough, R. M.; Song,
Y. Inhibitory effect of carboxylic acid group on hERG binding.
Bioorg. Med. Chem. Lett. 2006, 16, 5507–5512.

(80) Price, D. A.; Armour, D.; de Groot, M.; Leishman, D.; Napier, C.;
Perros, M.; Stammen, B. L.; Anthony Wood, A. Overcoming HERG
affinity in the discovery of the CCR5 antagonist maraviroc. Bioorg.
Med. Chem. Lett. 2006, 16, 4633–4637.

(81) Rendic, S.; Di Carlo, F. J. D. Human cytochrome P450 enzymes: A
status report summarizing their reactions, substrates, inducers, and
inhibitors. Drug Metab. ReV. 1997, 29, 413–580.

(82) Guengerich, F. P. Update information of human P450s. Drug Metab.
ReV. 2002, 4, 7–15.

(83) Lin, J. H.; Lu, A. Y. H. Inhibition and induction of cytochrome P450
and the clinical implications. Clin. Pharmacokinet. 1998, 35, 361–
390.

(84) Bertz, R. J.; Granneman, G. R. Use of in vitro and in vivo data to
estimate the likelihood of metabolic pharmacokinetic interactions.
Clin. Pharmacokinet. 1997, 32, 210–258.

(85) Rendic, S.; Di Carlo, F. J. Human cytochrome P450 enzymes: A
status report summarizing their reactions, substrates, inducers, and
Inhibitors. Drug Metab. ReV. 1997, 29, 413–580.

(86) Shimada, T.; Yamazaki, H.; Mimura, M.; Inui, Y.; Guengerich, F. P.
Interindividual variations in human liver cytochrome P-450 enzymes
involved in the oxidation of drugs, carcinogens and toxic chemicals:
studies with liver microsomes of 30 Japanese and 30 Caucasians.
J. Pharmacol. Exp. Ther. 1994, 270, 414–423.

(87) Masimirembwa, C. M.; Thompson, R.; Andersson, T. B. In vitro
high throughput screening of compounds for favorable metabolic
properties in drug discovery. Comb. Chem. High Throughput
Screening 2001, 4, 245–263.

(88) Lewis, D. F. V. Human cytochromes P450 associated with the phase
1 metabolism of drugs and other xenobiotics: A compilation of
substrates and inhibitors of the CYP1, CYP2, and CYP3 families.
Curr. Med. Chem. 2003, 10, 1955–1972.

(89) Lewis, D. F. V. Structural characteristics of human P450s involved
in drug metabolism: QSARs and lipophilicity profiles. Toxicology
2000, 144, 197–203.

(90) Sansen, S.; Yano, J. K.; Reynald, R. L.; Schoch, G. A.; Griffin, K. J.;
Stout, D. D.; Johnson, E. F. Adaptations for the oxidation of
polycyclic aromatic hydrocarbons exhibited by the structure of human
P450 1A2. J. Biol. Chem. 2007, 282 (19), 14348–14355.

(91) Burton, J.; Ijjaali, I.; Barberan, O.; Petitet, F.; Vercauteren, D. P.;
Michel, A. Recursive partitioning for the prediction of cytochromes
P450 2D6 and 1A2 inhibition: Importance of the quality of the
dataset. J. Med. Chem. 2006, 49, 6231–6240.

(92) Chohan, K. K.; Paine, S. W.; Mistry, J.; Barton, P.; Davis, A. M. A
rapid computational filter for cytochrome P450 1A2 inhibition
potential of molecule libraries. J. Med. Chem. 2005, 48, 5154–5161.

(93) Korhonen, L. E.; Rahnasto, M.; Maehoenen, N. J.; Wittekindt, C.;
Poso, A.; Juvonen, R. O.; Raunio, H. Predictive three-dimensional
quantitative structure-activity relationship of cytochrome P450 1A2
inhibitors. J. Med. Chem. 2005, 48, 3808–3815.

(94) Lewis, F. V.; Modi, S.; Dickins, M. Quantitative structure-activity
relationships (QSARs) within substrates of human cytochrome P450
involved in drug metabolism. Drug Metab. Drug ReV. 2001, 18, 221–
242.

(95) Williams, P. A.; Cosme, J.; Ward, A.; Angove, H. C.; Vinkovic,
D. M.; Jhoti, H. Crystal structure of humancytochrome P450 2C9
with bound warfarin. Nature 2003, 424, 464–468.

(96) Wester, M. R.; Yano, J. K.; Schoch, G. A.; Yang, C.; Griffin, K. J.;
Stout, D. D.; Johnson, E. F. The structure of human cytochrome P450
2C9 complexed with flurbiprofen at 2.0-Å resolution. J. Biol. Chem.
2004, 279, 563035637.

(97) Niwa, N.; Kageyama, A.; Kishimoto, K.; Yabusaki, Y.; Ishibashi,
F.; Katagiri, M. Amino acid residues affecting the activities of human
cytochrome P450 2C9 and 2C19. Drug Metab. Dispos. 2002, 30,
931–936.

(98) Lewis, D. F. On the recognition of mammalian microsomal cyto-
chrome P450 substrates and their characteristics towards the predic-
tion of human P450 substrate specificity and metabolism. Biochem.
Pharmacol. 2000, 60, 293–306.

(99) Snyder, R.; Sangar, R.; Wang, J.; Ekins, S. Three-dimensional
quantitative structure-activity relationship for Cyp2D6 substrates.
Quant. Struct.-Act. Relat. 2002, 21, 357–368.

(100) Ekins, S.; Bravi, G.; Binkley, S.; Gillespie, J. S.; Ring, B. J.; Wikel,
J. H.; Wrighton, S. A. Three and four dimensional-quantitative
structure-activity relationship (3D/4D-QSAR) analyses of CYP2D6
inhibitors. Pharmacogenetics 1999, 9, 477–489.

(101) Rowland, P.; Blaney, F. E.; Smyth, M. G.; Jones, J. J.; Leydon, V. R.;
Oxbrow, A. K.; Lewis, C. J.; Tennant, M. G.; Modi, S.; Eggleston,
D. S.; Chenery, R. J.; Bridges, A. M. Crystal structure of human
cytochrome P450 2D6. J. Biol. Chem. 2006, 281, 7614–7622.

(102) Rendic, S.; Di Carlo, F. J. Human cytochrome P450 enzymes: A
status report summarizing their reactions, substrates, inducers, and
inhibitors. Drug Metab. ReV. 1997, 29, 413–580.

(103) Williams, P. A.; Cosme, J.; Vinkovic, D. M.; Ward, A.; Angove,
H. C.; Day, P. J.; Vonrhein, C.; Tickle, I. J.; Jhoti, H. Crystal
structures of human cytochrome P450 3A4 bound to metyrapone and
progesterone. Science 2004, 305, 683–686.

(104) Yano, J. K.; Wester, M. R.; Schoch, G. A.; Griffin, K. J.; Stout,
C. D.; Johnson, E. F. The structure of human microsomal cytochrome
P450 3A4 determined by X-ray crystallography to 2.05 Å resolution.
J. Biol. Chem. 2004, 279, 38091–38094.

(105) Ekroos, M.; Sjogren, T. Structural basis for ligand promiscuity in
cytochrome P450 3A4. Proc. Natl. Acad. Sci. U.S.A. 2006, 103,
13682–13687.

(106) Ekins, S.; Stresser, D. M. ; Williams, A. J. In vitro and pharmacophore
insights into CYP3A enzymes. Trends Pharmacol. Sci. 2003, 24,
161–166.

(107) Hadjuk, P. J. Fragment-based drug design: How big is too big. J. Med.
Chem. 2006, 49, 6972–6976.

(108) SIMCA-P 10, Umetrics: Tvistevägen 48, Box 7960, SE-907 19 Umeå,
Sweden.

(109) Advanced Chemistry Development, Inc., 110 Yonge Street, 14th floor,
Toronto, Ontario, M5C 1T4, Canada, www.acdlabs.com.

(110) Statistica System Reference, Statsoft Inc., 2300 East Tulsa, OK 74104,
www.statsoft.com.

(111) Pan, L.; Ho, G.; Tsutsui, K.; Takahashi, L. Comparison of chro-
matographic and spectroscopic methods used to rank compounds for
aqueous solubility. J. Pharm. Sci. 2001, 90, 521–529.

(112) All animal studies were approved by an internal ethical review
committee and performed in accordance with the UK Animals
(Scientific Procedures) Act 1986 and “Principles of Laboratory
Animal Care” (NIH Publication #85-23, rev. 1985). Standard
methodologies were used to determine basic pharmacokinetic pa-
rameters following oral or intravenous dosing (e.g., clearance (blood
or plasma), volume of distribution, terminal half-life, and oral
bioavailability). Serial blood (or plasma) samples were obtained and
analysed for parent compound concentrations using LC-MS/MS
methodologies. Doses and formulations were selected on the basis
of compound solubility and pharmacological activity. To minimize
the impact of the individual study design, such as dosing vehicle,
amount, and so on, only discrete results where the oral dose was
<10 mg/kg in a standard formulation of polyethylene glycol (PEG)

Generation of a Set of ADMET Rules of Thumb Journal of Medicinal Chemistry, 2008, Vol. 51, No. 4 833



were used. For the purpose of illustration, a number of PK studies
by GSK scientists are referenced below (refs 113118).

(113) Watson, N. S.; Brown, D.; Campbell, M.; Chan, C.; Chaudry, L.;
Convery, M. A.; Fenwick, R.; Hamblin, J. N.; Haslam, C.; Kelly,
H. A.; King, N. P.; Kurtis, C. L.; Leach, A. R.; Manchee, G. R.;
Mason, A. M.; Mitchell, C.; Patel, C.; Patel, V. K.; Senger, S.; Shah,
G. P.; Weston, H. E.; Whitworth, C.; Young, R. J. Design and
synthesis of orally active pyrrolidin-2-one-based factor Xa inhibitors.
Bioorg. Med. Chem. Lett. 2006, 16, 3784–3788.

(114) Austin, N. E.; Baldwin, S. J.; Cutler, L.; Deeks, N.; Kelly, P. J.;
Nash, M.; Shardlow, C. E.; Stemp, G.; Thewlis, K.; Ayrton, A.;
Jeffrey, P. Pharmacokinetics of the novel, high-affinity, and selective
dopamine D3 receptor antagonist SB-277011 in rat, dog, and monkey:
In vitro/in vivo correlation and the role of aldehyde oxidase.
Xenobiotica 2001, 31, 677–686.

(115) Forbes, I. T.; Douglas, S.; Gribble, A. D.; Ife, R. J.; Lightfoot, A. P.;
Garner, A. E.; Riley, G. J.; Jeffrey, P.; Stevens, A. J.; Stean, T. O.;
Thomas, D. R. SB-656104-A: A novel 5-HT7 receptor antagonist
with improved In vivo properties. Bioorg. Med. Chem. Lett. 2002,
12, 3341–3344.

(116) Hagan, J. J.; Price, G. W.; Jeffrey, P.; Deeks, N. J.; Stean, T.; Piper,
D.; Smith, M. I.; Upton, N.; Medhurst, A. D.; Middlemiss, D. N.;
Riley, G. J.; Lovell, P. J.; Bromidge, S. M.; Thomas, D. R.
Characterization of SB-269970-A, a selective 5-HT7 receptor
antagonist. Br. J. Pharmacol. 2000, 130, 539–548.

(117) Plasma protein binding data was measured in the same experimental
assay as that described in ref 118. The key difference was that the
blood sample was centrifuged and the analysis was performed on
the plasma sample only.

(118) Summerfield, S. G.; Stevens, A. J.; Cutler, L.; Carmen-Osuna, M. D.;
Hammond, B.; Tang, S.; Hersey, A.; Spalding, D. J.; Jeffrey, P.

Improving the in vitro prediction of in vivo central nervous system
penetration: Integrating permeability, P-glycoprotein efflux, and free
fractions in blood and brain. J. Pharmacol. Exp. Ther. 2006, 316,
1282–1290.

(119) The hERG inhibitory potential was determined using an SPA assay
(Scintillation Proximity Assay) based on the CHO K1 hERG cell
line using the dofetilide 3H radioligand. To determine the IC50 of a
compound, 11 different concentrations ranging between 0.1 to 100
µM. The resulting dofetilide 3H response was determined using a
Wallac 1430 ViewLux microplate imager. Dose-response curves
were fitted using Grafit.

(120) The cytochrome P450 inhibitory potential was determined against
CYP1A2, 2C9, 2C19, 2D6, and 3A4 using bactosomes expressing
the appropriate cytochrome P450 (Cypex Ltd, Dundee, U.K.). The
following probes were used: (3-butyryl-7-methoxycoumarin 7-ethox-
yresorufin (1A2), 7-methoxy-4-trifluoromethylcoumarin-3-acetic
acid (2C9), 3-butyryl-7-methoxycoumarin (2C19), 4-methylami-
nomethyl-7-methoxycoumarin (2D6), and diethoxyfluorescein
(3A4). The inhibitory activity was determined by a fluorescent
plate reader methodology (Tecan Safire II (Tecan, Zurich,
Switzerland)), similar to that described by Crespi et al. (ref 121)
using a seven-point IC50 curve. Dose-response curves were
subsequently fitted using Grafit.

(121) Crespi, C. L.; Miller, V. P.; Penman, B. W. Microtiter plate assays
for inhibition of human drug-metabolizing cytochromes P450. Anal.
Biochem. 1997, 248, 188–190.

(122) Advanced Chemistry Development, Inc., 110 Yonge Street, 14th
Floor, Toronto, Ontario, M5C 1T4, Canada, http://www.acdlabs.com.

(123) Daylight Chemical Information Systems, Inc., 120 Vantis, Suite 550,
Aliso Viejo, CA 92656, U.S.A. http://www.daylight.com.

JM701122Q

834 Journal of Medicinal Chemistry, 2008, Vol. 51, No. 4 Gleeson


